Jumat, 06 Maret 2009

Vacum pump for powder handling



 

Principle of operation

These pumps work according to the rotary vane principle. An eccentrically installed rotor (8) rotates in the cylinder. The centrifugal force of the rotation pushes the rotor vanes (7), which glide in slots in the rotor, towards the wall of the cylinder. The vanes separate the sickle-shaped space between rotor and cylinder into chambers. When the chambers are connected with the inlet channel, gas is sucked in, compressed by the next rotation and pushed into the oil mist separator (1). The differential pressure constantly causes oil to be pressed into the compression chambers. The oil and the medium are then discharged into the oil separator and there separated from the exhaust air by gravity, a demister (12) and the discharge filter (9). The oil collects on the bottom of the oil separator and is then pushed into the compression chamber again (oil circulation). The oil-free medium is discharged through the discharge cover (10) into atmosphere.


 

Versions

Further pump descriptions state the nominal displacement and the design level:

Example:

RA 0800 B

RA = Ultimate pressure 0,5 hPa (mbar)

0800 = Nominal displacement = 800 m3/h

B = Design level

The RA version, if used constantly, requires an oil-return suction to be installed into the Bendplate. Operating pressure must be 300 hPa (mbar).


 

Principal options/ accessories

• Start relieve bypass

Bypass tube for the relieve at the start phase

• Oil level switch for the check of the oil level

• Heat exchanger oil-water as an additional cooler

• Gas ballast valve in cylinder covers (fan and/or motor side)

A gas ballast valve can be installed in cylinder cover at fan side. To increase the capacity of vapours, another gas ballast valve can be installed in the cylinder cover at the motor side. The valve can be open, or close the gas ballast during the operation of the pump In case of questions about the application and


 

Sabtu, 28 Februari 2009

Keystone Valve for flow control


Universal Valve for controoling flow such as water, milk, and oil. aplication technology for Dairy factory. its recomended for special uage in high qality standart

Valve Operation from Goyen

Mechanical Installation
The DD valves series valves allow the valve to be directly installed onto the inlet and outlet pipes without additional flange or pipe threads. Installation is achieved through compression nuts that provide an airtight seal. Valve must be independently restrained. These valves offer the same high performance as the "T" series valve with the same right angle construction. The valves may be operated either by integral pilot solenoid (CA models) or remote pilot solenoids (RCA models)
Typical Inlet Installation
The flange mount of the valve may be oriented to the pressure vessel as illustrated below.
Never mount the valve on the underside of the header or upside-down as this allows
the accumulation of moisture in the valve, which is detrimental to performance
Electrical Installation
To operate these main valve assemblies:
 RCA versions should use Goyen pilot solenoid RCA3D, which can be electrically operated in a remote location.
 CA versions are directly mounted with pilot operator.
* Refer to “Drawing Download” section for complete drawings and CAD downloads.

Operating Pressure Range all DD Valves
Maximum operating pressure 860 kPa (125 psi)
Recommended operating pressure 760 kPa (110 psi)
Minimum operating pressure30 kPa (5 psi)
Electrical Pulse times
Electrical "on time" ranges between 50 m sec to 500 m sec
Start-up Procedure for correct installation of GOYEN DD series valves ensure the following checks are satisfied:
 ensure valves are fully secured in position
 ensure dresser nuts are tightened to - 20nm (15 ft/lbs)
 ensure blowtube is secured adequately to the valve outlet and reverse pulse filter wall.
 the required air pressure has been applied to the header tank, ensuring compressed air is dry and free of particulates.
 all joints around the valve installation do not leak air.
 check the electrical connection at the remote pilot solenoid valve or on board the valve.
 check valve exhaust outlet for adequate venting and noise suppression. in case of turbine applications, protection against particulate / vermin inclusions should be incorporated.
 switch electrical control to continuous cycle and observe for several operating cycles. check for the correct valve opening sequence.
Fault Finding & Diagnostics, DD valve fails to open:
 Check electrical signal to RCA or CA operator coil
 Check for adequate air pressure and that it is present at inlet of the valve.
 Check exhausts are free from obstructions
DD valve has resonance noise evident.
 Check excessive silencer restriction in exhaust outlets
 Check partial blockages of bleed paths
 Check supply header capacity
DD valve fails to close
 Check that pilot is closing
 Check for blockages of bleed path
 Check for diaphragm damage either in the membrane or seat
Schedule maintenance should be applied, however it is recommended that full inspection be
carried out within 2 years of service life.
RCA/CA operator kit K0380
Standard Coil kits Refer Coil Options
Diaphragm kits:
RCA/CA20DD k2000 Standard K2007 Viton
RCA/CA25DD K2501 Standard K2503 Viton
RCA/CA45DD K4502 Standard K4503

Minggu, 22 Februari 2009

Pressure measurement priciples

The determination of the magnitude of a fluid force applied to a unit area. Pressure measurements are generally classified as gage pressure, absolute pressure, or differential pressure.Pressure gages generally fall in one of three categories, based on the principle of operation: liquid columns, expansible-element gages, and electrical pressure transducers. Liquid-column gages include barometers and manometers. They consist of a U-shaped tube partly filled with a nonvolatile liquid. Water and mercury are the two most common liquids used in this type of gage. There are three classes of expansible metallic-element gages: bourdon, diaphragm, and bellows. Bourdon-spring gages, in which pressure acts on a shaped, flattened, elastic tube, are by far the most widely used type of instrument. These gages are simple, rugged, and inexpensive. In diaphragm-element gages, pressure applied to one or more contoured diaphragm disks acts against a spring or against the spring rate of the diaphragms, producing a measurable motion. In bellows-element gages, pressure in or around the bellows moves the end plate of the bellows against a calibrated spring, producing a measurable motion. Electrical pressure transducers convert a pressure to an electrical signal which may be used to indicate a pressure or to control a process. Such devices as strain gages and resistive, magnetic, crystal, and capacitive pressure transducers are commonly used to convert the measured pressure to an electrical signal.
The determination of the magnitude of a fluid force applied to a unit area. Pressure measurements are generally classified as gage pressure, absolute pressure, or differential pressure. Pressure gages generally fall in one of three categories, based on the principle of operation: liquid columns, expansible-element gages, and electrical pressure transducers. Liquid-column gages include barometers and manometers. They consist of a U-shaped tube partly filled with a nonvolatile liquid. Water and mercury are the two most common liquids used in this type of gage. There are three classes of expansible metallic-element gages: bourdon, diaphragm, and bellows. Bourdon-spring gages, in which pressure acts on a shaped, flattened, elastic tube, are by far the most widely used type of instrument. These gages are simple, rugged, and inexpensive. In diaphragm-element gages, pressure applied to one or more contoured diaphragm disks acts against a spring or against the spring rate of the diaphragms, producing a measurable motion. In bellows-element gages, pressure in or around the bellows moves the end plate of the bellows against a calibrated spring, producing a measurable motion. Electrical pressure transducers convert a pressure to an electrical signal which may be used to indicate a pressure or to control a process. Such devices as strain gages and resistive, magnetic, crystal, and capacitive pressure transducers are commonly used to convert the measured pressure to an electrical signal.

Pressure transducer

Pressure transducer is An instrument component which detects a fluid pressure and produces an electrical, mechanical, or pneumatic signal related to the pressure.
In general, the complete instrument system comprises a pressure-sensing element such as a bourdon tube, bellows, or diaphragm element; a device which converts motion or force produced by the sensing element to a change of an electrical, mechanical, or pneumatic parameter; and an indicating or recording instrument. Frequently the instrument is used in an autocontrol loop to maintain a desired pressure.
Although pneumatic and mechanical transducers are commonly used, electrical measurement of pressure is often preferred because of a need for long-distance transmission, higher accuracy requirements, more favorable economics, or quicker response. Electrical pressure transducers may be classified by the operating principle as resistive transducers, strain gages, magnetic transducers, crystal transducers, capacitive transducers, and resonant transducers.
In resistive pressure transducers, pressure is measured by an element that changes its electrical resistance as a function of pressure. Many types of resistive pressure transducers use a movable contact, positioned by the pressure-sensing element. One form is a contact sliding along a continuous resistor, which may be straight-wire, wire- wound, or nonmetallic such as carbon.
Strain-gage pressure transducers might be considered to be resistive transducers, but are usually classified separately, They convert a physical displacement into an electrical signal. When a wire is placed in tension, its electrical resistance increases. The change in resistance is a measure of the displacement, hence of the pressure. Another variety of strain gage transducer uses integrated circuit technology. Resistors are diffused onto the surface of a silicon crystal within the boundaries of an area which is etched to form a thin diaphragm.
In magnetic pressure transducers, a change of pressure is converted into change of magnetic reluctance or inductance when one part of a magnetic circuit is moved by a pressure-sensing element—bourdon tube, bellows, or diaphragm.
Piezoelectric crystals produce an electric potential when placed under stress by a pressure-sensing element. Crystal transducers offer a high speed of response and are widely used for dynamic pressure measurements in such applications as ballistics and engine pressures.
Capacitive pressure transducers almost invariably sense pressure by means of a metallic diaphragm, which is also used as one plate of a capacitor.
The resonant transducer consists of a wire or tube fixed at one end and attached at the other (under tension) to a pressure-sensing element. The wire is placed in a magnetic field and allowed to oscillate. As the pressure is increased, the element increases the tension in the wire or tube, thus raising its resonant frequency

Pressure transducer

Pressure transducer of An instrument component which detects a fluid pressure and produces an electrical, mechanical, or pneumatic signal related to the pressure.
In general, the complete instrument system comprises a pressure-sensing element such as a bourdon tube, bellows, or diaphragm element; a device which converts motion or force produced by the sensing element to a change of an electrical, mechanical, or pneumatic parameter; and an indicating or recording instrument. Frequently the instrument is used in an autocontrol loop to maintain a desired pressure.
Although pneumatic and mechanical transducers are commonly used, electrical measurement of pressure is often preferred because of a need for long-distance transmission, higher accuracy requirements, more favorable economics, or quicker response. Electrical pressure transducers may be classified by the operating principle as resistive transducers, strain gages, magnetic transducers, crystal transducers, capacitive transducers, and resonant transducers. In resistive pressure transducers, pressure is measured by an element that changes its electrical resistance as a function of pressure. Many types of resistive pressure transducers use a movable contact, positioned by the pressure-sensing element. One form is a contact sliding along a continuous resistor, which may be straight-wire, wire-wound, or nonmetallic such as carbon. Strain-gage pressure transducers might be considered to be resistive transducers, but are usually classified separately, They convert a physical displacement into an electrical signal. When a wire is placed in tension, its electrical resistance increases. The change in resistance is a measure of the displacement, hence of the pressure. Another variety of strain gage transducer uses integrated circuit technology. Resistors are diffused onto the surface of a silicon crystal within the boundaries of an area which is etched to form a thin diaphragm. In magnetic pressure transducers, a change of pressure is converted into change of magnetic reluctance or inductance when one part of a magnetic circuit is moved by a pressure-sensing element—bourdon tube, bellows, or diaphragm. Piezoelectric crystals produce an electric potential when placed under stress by a pressure-sensing element. Crystal transducers offer a high speed of response and are widely used for dynamic pressure measurements in such applications as ballistics and engine pressures. Capacitive pressure transducers almost invariably sense pressure by means of a metallic diaphragm, which is also used as one plate of a capacitor. The resonant transducer consists of a wire or tube fixed at one end and attached at the other (under tension) to a pressure-sensing element. The wire is placed in a magnetic field and allowed to oscillate. As the pressure is increased, the element increases the tension in the wire or tube, thus raising its resonant frequency.

Operating Element of pressure transmitter


The digital display is delivered already mounted when it is ordered with the instrument. In this ase the digital display with the retaining ring must be removed before operating. If you want to order an digital display at a later date, then please observe the instructions in Section 6.3 "Mounting the digital display". Removing the display:
· Push up the latch with the arrow until the grip of the retaining ring on the electronic insert is heard to click.
· Loosen the retainer ring and lift off carefully to prevent the display cable from breaking.
· For reading the display during operation, plug the display onto the edge of the housing or let it hang down loosely by its cable next to the housing.

Function of the display
The digital display has two types of display:
· Display in measurement mode: This is shown as standard
· Display in calibration mode: This is shown after pressing the Zero or Span key once.
It returns automatically to measurement mode after 2 seconds.

Operation using Commuwin II
When operating using the Commuwin II display and operating program the Cerabar M is calibrated and operated:
· via an operating matrix or
· via the graphics operating mode.
The appropriate server (e.g. HART or ZA 672) must be activated. A description of the Commuwin II operating program is found in the operating manual BA 124F. Operating matrix The advanced functions of the Cerabar M can be accessed in this operating mode in the menu.
· Each row is assigned to a function group.
· Every field displays a parameter.
The calibrating parameters are entered in the appropriate fields.


Operating with the HART protocol via Universal HART Communicator DXR 271
When operating with the HART protocol an interactive menu operation derived from the matrix is used (see also the appropriate operating manual for the handheld terminal).
· The menu "Group Select" calls up the matrix.
· The bar lines display the menu headings.
· Parameters are set using submenus.

pressure transmitter measures from ndle Hauser

The Cerabar M pressure transmitter measures the pressure of gases, vapours and liquids and is used in all areas of chemical and process engineering. Operating principle Ceramic sensor The system pressure acts directly on the rugged ceramic diaphragm of the pressure sensor deflecting it by a maximum of 0.025 mm (0.0098 in). A pressure-proportional change in the is measured by the electrodes on the ceramic substrate and diaphragm. The measuring range is determined by the thickness of the ceramic diaphragm.
Metal sensor
The process pressure deflects the separating diaphragm with a filling liquid transmitting the pressure to a resistance bridge. The bridge output voltage, which is proportional to pressure, is then measured and processed.

The complete measuring system consists of
· Cerabar M pressure transmitter with 4…20 mA signal output with superposed digital signal (HART communication) and power supply 11.5…45 VDC, in Ex area 11.5…30 VDC.
Operation can be carried out via:
· a digital display for operating and calling up measured values locally,
· the universal handheld HART Communicator DXR 275,
· the Endress+Hauser Commuwin II operating program.
electrical Connection
Transposed, screened two-wire cabling is recommended for the connecting cable. Max. wire diameter: 2.5 mm2 permanently attached cable The power supply voltage is:
· Non-Ex: 11.5…45 VDC
· Ex i area: 11.5…30 VDC
Internal protection circuits against reverse polarity, HF interference and overvoltage peaks (see TI 241F "EMC Guidelines"). A test signal can be measured using the terminal plugs for this purpose without interrupting measurement. Cable connection · Unscrew the cover
· If present, remove the retainer ring with analogue display. In addition:
– Push up the latch with the arrow until the grip of the retaining ring is audibly released.
– Loosen the retainer ring carefully to prevent the display cable from breaking. The plug of the display can remain plugged in.
· Insert the cable through the cable entry
· Connect the cable wires as shown in the connection diagram.
· Where appropriate, replace the retainer ring with analogue display. The grip of the retainer ring clips in with an audible click.
· Screw down the cover

Connecting the handheld terminal
· Do not replace the battery of the handheld terminal in the explosion hazardous area.
· For a Cerabar M with FM or CSA certificate: Electrical connection according to "Installation
drawing" (enclosed in the packing of the Cerabar M).
· For correct transmis sion of the communication signal, a minimum resistance of 250 W must be present between the connection points and the power supply. The Commubox FXA 191 connects the Cerabar M with a HART protocol to the RS 232 C serial interface of a personal computer. This enables the Cerabar M to be remotely operated with the Endress+Hauser operating program. The Commubox FXA 191 is used for intrinsically safe signal circuits.

2 portValve for flow control automation


Sabtu, 21 Februari 2009

Gear Unit for transfering motor energy



Mechanical Installation
Required tools / material
Set of spanners
• Torque wrench (for shrink discs, AQ motor adapter, input shaft assembly with centering shoulder)
• Mounting device
• Shims and distance rings, if necessary
• Fastening devices for input and output elements
• Lubricant (e.g. NOCO® fluid)
• Agent for securing screws, e.g. Loctite 243 (for input shaft assembly with centering shoulder)

Preliminary work
The output shafts and flange surfaces must be thoroughly cleaned of anti-corrosion agents, contamination or such like (use a commercially available solvent). Do not let the solvent come into contact with the sealing lips of the oil seals – material damage! Long-term storage of gear units.
Gear units of the “extended storage” type have
• a mineral oil fill (CLP) or synthetic oil fill (CLPHC) suitable for the mounting position so the unit is ready to run. However, you should still check the oil level prior to startup (see section "Inspection/Maintenance" / "Inspection/Maintenance work").
• a higher oil level with synthetic oil CLP PG). Correct the oil level prior to startup (see section "Inspection/Maintenance" / "Inspection/Maintenance work").
Installing the gear unit
The gear unit or geared motor must be mounted/installed in the specified mounting position on a level1, vibration-absorbing and torsionally rigid support structure (Spiroplan® gear units are not dependent on mounting position). Do not tighten housing legs and mounting flanges against each other and pay attention to the approved overhung and axial loads
Use only bolts of 8.8 quality for installation of the geared motors, Use bolts of 10.9 quality for fastening of flanges to transmit the rated torques listed in the catalog for the following helical geared motors in flange design (RF..) and in foot/ flange version (R..F):
• RF37, R37F with flange-Æ 120 mm
• RF47, R47F with flange-Æ 140 mm
• RF57, R57F with flange-Æ 160 mm
At this point of assembly, please check that the oil filling is as prescribed for the mounting position (see "Lubricants" / "Lubricant fill levels" or data on nameplate). In case of mounting position change, adjust lubricant filling quantities accordingly. Please consult our service department, if the mounting position for K gear units is changed to M5 or M6 or within these mounting positions. Please consult our service department, if the mounting position of S units in sizes S47 ... S97 is to be changed to mounting position M2. Use plastic inserts (2 – 3 mm thick) if there is a risk of electrochemical corrosion between the gear unit and the driven machine (connection between different metals such as cast iron and high-grade steel)! Also fit the bolts with plastic washers! Ground the housing additionally – use the grounding bolts on the motor. Installation in damp areas or in the open Gear units are supplied in corrosion-resistant versions for use in damp areas or in the open air. Any damage to the paintwork (e.g. on the breather valve) must be repaired.
No ventilation is required for R17, R27 and F27 gear units in mounting positions M1, M3, M5 and M6 as well as Spiroplan® W gear units. All other gear units are delivered by SEW ready for the mounting position with the breather valve and transport fixture fitted.
Exceptions:
Gear units for long-term storage, in pivoting or inclined mounting positions are supplied with a screw plug installed in the provided vent hole. Prior to startup, the customer must replace screw plug at the highest location by the supplied breather valve.
• With geared motors for long-term storage, pivoting or inclined mounting positions, the supplied breather valve is located in the motor terminal box.
• With gear head units that have to be vented on the input side, the breather valve is supplied in a plastic bag.
• No breather valve will be supplied for gear units in enclosed design. Activating the breather valve
Usually the breather valve is activated in the plant. Should this not be the case, the transport fixture must be removed from the breather valve prior to the startup of the gear unit!

Principles of Operation for the Metal Detector

Safeline detectors utilise a low power, high frequency, magnetic field coil system which has the ability to sense minute disturbances created by metal particles. A metal particle passing through the aperture of the detector will create changes in the magnetic field inside the detector. The changes in the magnetic field will generate electrical signals in the coil system which can be characterised by the parameters Phase and Amplitude. The amplitude/size of the signal is related to the size of the metal particle passing through the field, the larger the metal particle the greater the amplitude of the signal. Different types of metal generate signals which differ in phase angle. The term phase angle is a comparative term and is a measurement of phase relationship relative to some reference Vibration Signals Great care is taken in the design and manufacture of the Safeline detectors to minimise the effect of vibration on the performance of the detectors. However mechanical disturbances do create vibration signals from the coil system. Vibration signals can be represented in the same way as signals generated by metal particles i.e. a signal with amplitude and phase. The vibration signal is used as a reference when comparing the phase angle of signals from the coil system. For example, if we say stainless steel has a particular value of phase angle, the phase angle is the angle relative to vibration. Reasons for selecting vibration as the reference phase will become apparent. Product Effect Metal detectors are used to inspect all types of products e.g. food pharmaceuticals, plastics, chemicals and many others. Some products exhibit a ‘product effect’ i.e. the product itself generates a signal in the same way as a metal particle. This results from the bulk conductivity of the product at high frequency. For most products, usually dry products, the product effect is negligible. Wet or moist products, e.g. meat, sauces, soups etc. generate a large product effect signal which will influence the effective operating sensitivity of the detector. Product effect signals can be represented diagramatically as a signal with amplitude and phase in the same manner as the signals from metallic particles.
Phase Control
The Safeline metal detector contains a phase control circuit which discriminates between the wanted signals from metal particles and the unwanted signals from vibration and product effect, i.e. it maximises the detectors response to metal particles whilst minimising the effects of the unwanted signals. Probably the simplest way of reducing the vibration or product effect signals would be to adjust the sensitivity control. However, the sensitivity control would reduce the sensitivity to all signals, metallic signals, vibration and product signals alike. What is required is a more selective adjustment that will discriminate between different signals. The phase control does this, it selectively reduces the signals from vibration and product effect with minimal effect on the metallic signals. A comparison can be made with a domestic Hi-Fi system. The volume control of the Hi-Fi increases or decreases the amplitude of all signals just like the metal detector sensitivity control. The bass control of the Hi-Fi selectively controls the low frequency notes only. This is similar to the phase control circuit, however the phase control circuit in a Safeline metal detector is very much more selective.
The characteristic of the phase control circuit. This shows the position of the phase control aligned to minimise the unwanted vibration signal. All signals which break through the phase control characteristic (the shaded area) will trigger the detector. From this it can be seen that the amplitude of the unwanted vibration signal would have to be increased to trigger the detector. It can be seen from Fig 2 that the phase control characteristic masks off some of the ferrous signal and has a minimal effect on the Non Ferrous/Stainless Steel signals

Sabtu, 14 Februari 2009

petunjuk pemilihan kapasitor bank

Sebelum melakukan pemilihan dan instalasi unit kapasitor ke jaringan listrik, sangat dianjurkan mengamati terlebih dahulu besarnya harmonik agar unit kapasitor yang terpasang nantinya memiliki masa kerja yang lama. Penentuan bank kapasitor ditentukan sebagai berikut:



Contoh pemilihan kapasitor
Untuk harmonik dengan kriteria G/Sn = 25% - 60%, ABB menggunakan faktor detuned reactor p = 7% yang memiliki frekwensi resonansi pada 189 Hz. Saat detune reactor dan kapasitor terpasang ke jaringan, maka tegangan yang terukur pada kapasitor (Uc) akan menjadi :
Uc = Un / (1 - p) dimana Un = tegangan nominal fasa ke fasa

Contoh 3 :
Diketahui bahwa suatu perusahaan menginginkan kompensasi faktor daya menjadi 0.98. Datadata yang dapat dihimpun adalah cos phi awal 0.7, Un = 400 VAC dan arus incoming maksimal yang terukur, Ib adalah 1000 A dengan G/Sn=30%. Tentukan kapasitor yang diperlukan untuk kompensasi ini.
Jawaban 3 :
P = √3 x Un x Ib x cos phi = 1.73 x 400 x 1000 x 0.7 = 484.4 kW
Qc = P (tg phi awal - tg phi target) lihat hal 8-2.
= 484400 x 0.82 = 397.2 kVAR ~ 400 kVAR
~ 400 kVAR ===> 50 kVAR x 8 step
Uc = 400 / ( 1 - 0.07 ) = 430 VAC
Dengan safety margin (SF) sebesar 20%, maka unit kapasitor per stepnya harus dinaikkan tegangannya sebesar 20%, sehingga menjadi :
Ucs = 1.2 x Uc = 1.2 x 430 = 516 VAC ~ 525 VAC
Dari halaman 8-9 pada tabel detuned reactor, untuk kapasitor 50 kVAR pada tegangan 400 VAC, maka identik dengan kapasitor 80 kVAR pada tegangan 525 VAC. Sehingga kapasitor yang dibutuhkan adalah 80 kVAR pada tegangan 525 VAC x 8 step.

Contoh 4 :
Diketahui bahwa suatu perusahaan menginginkan kompensasi faktor daya menjadi 0.98. Datadata yang dapat dihimpun adalah cos phi awal 0.7 kemudian Un = 400 VAC dan arus incoming maksimal yang terukur adalah 1000 A dengan G/Sn=20 %. Tentukan kapasitor yang diperlukan untuk kompensasi ini.
Jawaban 4 :
P = √3 x Un x I x cos phi = 1.73 x 400 x 1000 x 0.7 = 484.4 kVA
Qc = P (tg phi awal - tg phi target) lihat hal 8-2.
= 484400 x 0.82 = 397.2 kVAR ~ 400 kVAR
~ 400 kVAR ===> 8 step x 50 kVAR
Sesuai dengan ketentuan, untuk G/Sn = 20 %, maka unit kapasitor yang digunakan harus dinaikkan tegangannya pada 460 V. Dari halaman 8-7 pada tabel 460 VAC - 50 Hz, untuk kapasitor 50 kVAR pada tegangan 400 VAC, maka identik dengan kapasitor 70 kVAR pada tegangan 460 VAC. Sehingga kapasitor yang dibutuhkan adalah 70 kVAR pada tegangan 460
VAC x 8 step.

Kompensasi energi reaktif

1. Metode perhitungan
Kebutuhan unit kapasitor dapat ditentukan dengan rumusan berikut :
Qc = P (tan phi awal - tan phi target)
dimana : P = daya aktif (kW)
Qc = unit kapasitor yang dibutuhkan (kVAR)
Besarnya (tan phi awal - tan phi target) dapat dilihat pada tabel konversi
Contoh 1 :
Diketahui bahwa suatu perusahaan menginginkan kompensasi faktor daya menjadi 0.98. Data data yang dapat dihimpun adalah cos phi awal 0.7, Un = 400 VAC dan arus maksimal Ib yang
terukur di sisi incoming adalah 1000 A. Tentukan kapasitor yang diperlukan untuk kompensasi
ini.
Jawaban 1 :
P = √3 x Un x Ib x cos phi = 1.73 x 400 x 1000 x 0.7 = 484.4 kW
Qc = P (tg phi awal - tg phi target)
= 484400 x 0.82 = 397.2 kVAR ~ 400 kVAR
~ 400 kVAR
Jadi unit kapasitor yang dibutuhkan adalah 50 kVAR x 8 step.
2. Metode kwitansi tagihan listrik
Metode ini memerlukan kecermatan pencatatan jam operasi pabrik per harinya, serta membaca
rincian data yang ada pada rekening listrik seperti besarnya LWBP (Luar Waktu Beban Puncak),
WBP (Waktu Beban Puncak, 18.00 - 22.00) dan faktor meter.
Besarnya unit kapasitor yang terpasang ditentukan oleh rumus berikut ini :
Qc = {kVARh total - (tan phi target x kWh total)} / jam operasi sebulan

contoh 2
Meter Akhir Yang lalu Faktor kali
LWBP 9967 9850 4000
WBP 1147 1124
kVARh 6509 6408 4000

Jawaban 2 :
P = {(LWBP akhir - LWBP yang lalu) + (WBP akhir - WBP yang lalu) x faktor kali meter
= {(9967 - 9850) + (1147-1124)} x 4000
= 560000 kWh
Q = (kVARh akhir - kVARh yang lalu) x faktor kali meter
= (6509 - 6408) x 4000
= 404000 kVARh
tan phi = Q / P = 560000/404000
= 1.386 ===> cos phi = 0.58 (lihat tabel konversi hal. 8-2)
Jam operasi = 24 jam / hari x 25 hari / sebulan = 600 jam
cos-1 phi (0.98) = tan-1 phi (0.2)
Qc = {404000 - (0.2 x 560000)} / 600
= 486 kVAR ~ 500 kVAR
Jadi unit kapasitor yang dibutuhkan adalah 50 kVAR x 10 step.

3. Metode estimasi dari daya nominal transformer yang terpasang
Metode ini mengasumsikan bahwa transformer dibebani prosentasi dari kapasitas daya nominal
transformer (Sn), dengan cos phi awal dari 0.7 dan cos phi target adalah 0.99, maka besarnya unit kapasitor (Qc) yang dibutuhkan dapat dilihat pada tabel berikut :

Daya trafo, Sn Estimasi beban penuh
[kVA] 50% 65% 80% 90%
160 50 70 80 90
250 80 100 120 140
315 100 120 150 180
400 120 160 200 230
500 150 200 250 300
630 200 250 300 350
800 250 325 400 450
1000 300 400 500 600
1250 400 500 620 700
1600 500 650 800 900
2000 600 800 1000 1150
2500 800 1000 1250 1400



Contoh :
Untuk transformer 1000 kVA yang dibebani 80% dari kapasitas maksimalnya, maka untuk
mengkoreksi faktor daya dari 0.7 menjadi 0.99 membutuhkan bank kapasitor sebesar 500 kVAR.

Kapasitor CLMD dari ABB terdiri dari sejumlah elemen yang digulung yang terbuat daribahan metallized polypropylene film. Gulungan kering ini dilengkapi dengan pemutus terangkai yang menjamin bahwa setiap elemen tahan dan terputus dari rangkaian di akhir masa kerjanya. Setiap gulungan ditempatkan dalam wadah plastik dan dicor dengan resin yang dipanaskan untuk memperoleh elemen tertutup yang sempurna.

suplai daya yang dibutuhkan tegangan dan frekwensi. Kotak besi tersebut diisi dengan dengan bahan anorganik, lembab dan butiran tahan panas untuk menyerap energi yang dihasilkan atau untuk memadamakn nyala api saat terjadi kerusakan di akhir masa elemen. Unit kapasitor CLMD diberikan dengan penyama panasuntuk menjamin disipasi panas efektif.
Desain jenis kering - tidak ada resiko kebocoran Kapasitor CLMD mempunyai bahan dielektrik jenis kering sehingga tidak ada resiko kebocoran atau polusi ke lingkungan. Rugi-rugi yang kecil
Rugi-rugi dielektrik kurang dari 0.2 watt per kVAR. Rugi-rugi keseluruhan termasuk resistor pembuang muatan kurang dari 0.5 watt per kVAR. Tahan lama - pemulihan sendiri (self healing) Saat terjadi gangguan yang terbentuk pada dielektrik kapasitor, elektroda yang berlapis logam yang berdekatan dengan lokasi gangguan segera menguap dan mengisolasi gangguan. Kemudian kapasitor bekerja secara normal lagi.

Proteksi terhadap api
Semua elemen kapasitor CLMD dikelilingi oleh bahan vermiculite, yaitu suatu bahan anorganik, lembam, tahan api dan material butiran kecil-kecil yang tidak beracun.Saat terjadi gangguan, bahan vermiculite ini dengan aman menyerap energi yang dihasilkan dalam kotak kapasitor dan
memadamkan kemungkinan terjadinya nyala api. Pemutus terangkai unik Sistem pemutus terangkai unik menjamin bahwa setiap elemen dapat diputuskan dari rangkaian pada akhir masanya. Mudah dipasang - ringan Kapasitor CLMD sangat ringan, sehingga tidak menyulitkan waktu pemasangan. Ketahanan yang handal Kapasitor CLMD mengacu ke standar IEC 831-1 & 2, dan standar internasional lainnya. Penggunaan terminal yang kokoh sebagai pengganti ring (bushing) porselin yang mudah retak sehingga resiko rusak saat pemasangan dapat dihindari, dan mengurangi kebutuhan perawatan. Keamanan Pelindung panas dipasang di sekitar setiap elemen kapasitor dan memberikan disipasi panas efektif. Kapasitor CLMD dilengkapi dengan resistor pembuang muatan.

Relay proteksi Motor

Relai proteksi motor dengan thermistor digunakan untuk mengontrol motor yang terpasang sensor resistor PTC. Sensor temperatur dimasukkan ke dalam belitan stator dan mengukur langsung panas motor. Kontrol langsung dijamin di bawah kondisi operasi berikut ini:
􀂄 kerja berat
􀂄 frekwensi switsing tinggi
􀂄 fase tunggal
􀂄 suhu ambien tinggi
􀂄 pendinginan tidak mencukupi
􀂄 pengereman motor
􀂄 ketidakseimbangan arus
Relai ini lepas dari arus nominal motor dan metode pengasutan motor. Sensor resistor PTC dihubungkan secara seri dengan terminal Ta dan Tb. Jumlah sensor resistor PTC dibatasi oleh jumlah individu resistor sensor PTC.

RG = R1 + R2 + RN < 1.5 kohm

Di bawah kondisi operasi normal, nilai resistansi di bawah nilai respon. Bila ada salah satu resistor PTC panas berlebihan, maka keluaran relai akan OFF. Setelah dingin, keluaran relai akan ON lagi secara otomatis, bila autoreset dikonfigurasi. Relai yang dilengkapi konfigurasi tombol tekan di depan atau remote reset harus dikontrol melalui masukan kontrol dengan sinyal yang dibutuhkan. Kemungkinan aplikasi lebih lanjut: Monitor temperatur perlengkapan yang dipasang dengan sensor resistor PTC, antara lain:
􀂄 bantalan mesin giling
􀂄 ventilator udara panas
􀂄 oli
􀂄 udara
􀂄 instalasi pemanas

Informasi umum temperature termistor
Sensor temperatur thermitor - PTC (Positive TemperatureCoefficient) harus dipilih oleh pabrik motor tergantung pada:
􀂄 klas isolasi motor IEC 34-11
􀂄 kategori penggunaan motor
􀂄 karakteristik khusus motor seperti penampang penghantar belitan faktor beban lebih yang
diijinkan, dan lain-lain
􀂄 kondisi tertentu yang dijelaskan oleh pemakai, seperti suhu ambien yang diijinkan, resiko akibat rotor terkunci, beban lebih yang diijinkan Satu sensor temperatur harus ditanam di setiap fase belitan motor. Untuk kasus motor sangkar tupai 3 fase, tiga buah sensor harus ditanam di belitan stator. Demikian 3 sensor ini dapat pula digunakan untuk motor dengan dua kecepatan dengan 1 belitan (koneksi Dahlander)
Sensor temperatur thermitor - PTC (Positive Temperature Coefficient) harus dipilih oleh pabrik motor tergantung pada:
􀂄 klas isolasi motor IEC 34-11
􀂄 kategori penggunaan motor
􀂄 karakteristik khusus motor seperti penampang penghantar belitan faktor beban lebih yang
diijinkan, dan lain-lain
􀂄 kondisi tertentu yang dijelaskan oleh pemakai, seperti suhu ambien yang diijinkan, resiko akibat rotor terkunci, beban lebih yang diijinkan Satu sensor temperatur harus ditanam di setiap fase belitan motor. Untuk kasus motor sangkar tupai 3 fase, tiga buah sensor harus ditanam di belitan stator. Demikian 3 sensor ini dapat pula digunakan untuk motor dengan dua kecepatan dengan 1 belitan (koneksi Dahlander).

Senin, 02 Februari 2009

Daya dan arus nominal motor


Aplikasi
Kontaktor A 9 ... A 110 terutama digunakan untuk mengontrol motor 3 fase, dan umumnya mengontrol rangkaian daya sampai 690 VAC / 1000 VAC atau 220 VDC / 440 VDC. Kontaktor dapat juga digunakan untuk banyak aplikasi seperti isolasi, switsing kapasitor dan penerangan.
Penjelasan
􀂄 Kontaktor A 9 ... A 110 dengan kontak bantu 1 tumpukan:
􀂆 3 kutub utama
􀂆 termasuk 1 buah kontak bantu
􀂆 kontak bantu dapat dipasang di depan dan di samping
􀂄 Kontaktor A 50 ... A 110:
􀂆 3 kutub utama
􀂆 kontak bantu dapat ditambahkan di depan dan di samping
􀂄 Rangkaian kontrol: dioperasikan secara AC dengan
rangkaian magnet terlaminasi.
􀂄 Lengkapan: tersedia berbagai lengkapan.
􀂄 Kontaktor A 9 ... A 40 dengan kontak bantu 2 tumpukan:
􀂆 tumpukan 1 dengan 3 kutub utama dan termasuk 1 buah
kontak bantu
􀂆 tumpukan 2 termasuk 2 buah kontak bantu
􀂆 dapat ditambahkan kontak bantu di samping

Produk MCCB dari ABB SACE terdiri dari 2 seri, yaitu Tmax dan Isomax S. MCCB keluarga Tmax terbagi dalam 3 versi, yaitu T1, T2 dan T3 dengan arus layanan tak terinterupsi dari 160 A sampai dengan 250 A, dan kapasitas pemutusannya bervariasi dari 16 kA sampai dengan 70 kA. Untuk keluarga MCCB Isomax S terbagi dalam 7 versi, yaitu S1, S2, S3, S5, S6, S7 dan S8 dengan arus nominal tak terinterupsi dari 125 A sampai dengan 3.200 A, dan kapasitas pemutusannya sampai dengan 85 kA. Semua seri MCCB tersedia dalam jenis tetap (fixed), jenis tusuk (plug-in) dan jenis tarik (withdrawable).
Berikut dengan aksesoris yang sangat lengkap seperti: pelepas shunt trip, pelepas undervoltage, kontak bantu, handel putar, terminal koneksi dari depan dan belakang, plat interlok dan mekanisme operasi motor (solenoid operator) untuk kendali secara jarak jauh. MCCB dari ABB SACE dapat digunakan dalam kondisi suhu ambien bervariasi antara -25 oC dan +70 oC. Fitur yang lain adalah dapat digunakan pada ketinggian 2000 m tanpa penurunan unjuk-kerja. Untuk MCCB yang dilengkapi dengan unit pelepas arus lebih elektronik, operasi proteksinya dijamin tidak terpengaruh adanya interferensi yang\ disebabkan oleh medan elektromagnetik.
MCCB Tmax dan Isomax S berikut lengkapannya mengacu ke standar IEC 60947-2 dan EC
(European Conformity) untuk:
􀂄 Low Voltage Directive (LVD) no. 72/23 EEC
􀂄 Electromagnetik Compatibility Directive (EMC) no. 89/336 EEC.

Tmax
MCCB Tmax T1, T2 dan T3 menggunakan unit pelepas arus lebih jenis thermomagnetik yang dapat diatur (TMD) yang digunakan untuk memproteksi aplikasi arus bolak-balik dan searah. Unit pelepas thermomagnetik ini terdiri dari unit thermal yang terbuat dari bimetal dan unit magnetik untuk proteksi terhadap hubung pendek. Khusus MCCB Tmax T2 dilengkapi dengan unit pelepas arus lebih (overcurrent releases) elektronik PR221DS berbasis teknologi mikroprosesor yang memberikan fungsi proteksi terhadap beban lebih L dan hubung pendek S/I.

Isomax S
MCCB Isomax S1, S2, S3, S5 dan S6 menggunakan unit pelepas arus lebih jenis thermomagnetik (TMD) dengan setelan arus lebih yang dapat diatur kecuali Isomax S1 dengan setelan tetap.
Sedangkan untuk Isomax S5, S6, S7 dan S8 menggunakan unit pelepas arus lebih jenis elektronik

PR211 (LI) dan PR212 (LSI-LSIG).
Untuk varian jenis tusuk tersedia Isomax S1 - S5, sedangkan untuk varian jenis tarik tersedia Isomax S3 - S7. Tersedia pula kit konversi dari jenis tetap ke jenis tusuk dan kit konversi dari jenis tetap ke jenis tarik sehingga memberikan kemudahan dalam pemasangan.

Unit trip
Unit trip LI memiliki proteksi terhadap arus beban lebih (L) dan arus hubung pendek (I). Sedangkan unit trip LSI memiliki proteksi terhadap arus beban lebih (L), arus hubung-pendek dengan tunda waktu (S) dan arus hubung-pendek instan (I). TMD = unit trip dengan setelan beban lebih yang dapat diatur.